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Abstract:  10 

In many mountains, snowmelt provides most of the runoff. In Afghanistan, few ground-based measurements of the snow resource 

exist. Operational estimates use imagery from optical and passive microwave sensors, but with their limitations. An accurate 

approach reconstructs spatially distributed snow water equivalent (SWE) by calculating snowmelt backward from a remotely 

sensed date of disappearance, but reconstructed SWE estimates are available only retrospectively; they do not provide a forecast. 

To estimate SWE early in the snowmelt season, we consider physiographic and remotely-sensed information as predictors and 15 

reconstructed SWE as the target. The period of analysis matches the AMSR-E radiometer’s lifetime from 2003 to 2011, for the 

months of April through June. The spatial resolution of the predictions is 3.125 km, to match the resolution of a microwave 

brightness temperature product. Two machine learning techniques—bagged regression trees and feed-forward neural networks—

produced similar mean results, with 0–14% bias and 46–48 mm RMSE on average. Daily SWE climatology and fractional snow-

covered area are the most important predictors. We conclude that the methods can accurately estimate SWE during the snow season 20 

in remote mountains. 

1 Introduction 

Accurate estimates of snow water equivalent (SWE) in mountain watersheds pose a longstanding, unsolved problem. Lettenmaier 

et al. (2015) note that “retrieval of snow water equivalent from space remains elusive especially in mountain areas” and argue that 

“this area deserves more strategic thinking from the hydrology community.” Dozier et al. (2016) identify five approaches to the 25 

problem, but point out that all are problematic in some way. Operational models’ high uncertainty imposes costs for water users. 

For instance, April to July runoff forecasts in the well instrumented American River Basin in California’s Sierra Nevada have a 

median error of 18% and a 90th percentile error (1 year out of 10) exceeding 60% (Dozier, 2011). Uncertainty stems from the 

heterogeneous distribution of mountain snow. A sparse network of sensors sometimes fails to characterize this heterogeneity or 

even its integrated volume over a drainage basin. In Afghanistan only a few stations measure any hydrological or meteorological 30 

variables, and only a few dams store snowmelt runoff. Low snowpack years lead to humanitarian crises with little warning, as 

rivers and streams run dry in the fall and crops fail (e.g. USAID, 2008). 

Remotely sensing SWE in the mountains has also proven difficult. Passive microwave (PM) sensors offer real-time global SWE 

estimates but suffer from several issues, notably signal loss in wet snow (Li, 2006), saturation in deep snow (Hancock et al., 2013; 

Kelly et al., 2003; Takala et al., 2011; Tedesco and Narvekar, 2010), decreasing SWE with increasing forest fraction (Nolin, 2010; 35 

Tedesco and Narvekar, 2010), subpixel variability in the mountains owing to the large (~25 km) pixel size (Vander Jagt et al., 
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2013), and SWE overestimation in the presence of large grains such as depth and surface hoar (Derksen et al., 2005; Durand et al., 

2011). A new product, the Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature Earth System Data Record 

(hereafter enhanced resolution PM, Brodzik and Long, 2016) addresses the resolution limitation by providing up to 3.125 km 

spatial resolution gridded brightness temperatures by taking advantage of overlapping footprints, at the expense of some added 

noise. Even given these concerns, PM sensors could in principle provide less biased information if integrated with other datasets. 5 

Doing so requires an independent method of estimating spatially distributed SWE. 

A strong candidate for such an independent estimate is reconstructed SWE. From satellite-based imagery in the visible through 

shortwave-infrared bands, we can successfully map fractional snow-covered area (FSCA) at sub-pixel resolution (Painter et al., 

2009; Rittger et al., 2013; Rosenthal and Dozier, 1996). From the remotely sensed date of disappearance, snowmelt can be 

calculated backward to reconstruct SWE for each day back to peak accumulation (Martinec and Rango, 1981). Successful examples 10 

of reconstructed SWE include large basins in the Rocky Mountains (Molotch, 2009; Schneider and Molotch, 2016) and the Sierra 

Nevada (Girotto et al., 2014; Guan et al., 2013; Rittger et al., 2016). When compared with SWE estimates from NASA’s Airborne 

Snow Observatory in the upper Tuolumne River Basin from 2013 through 2015, our reconstructed SWE estimates had a 26% Mean 

Absolute Error (MAE, Bair et al., 2016) and no bias. In contrast, the Snow Data Assimilation System (SNODAS, Barrett, 2003), 

the operational model used by the National Weather Service, had a 65% MAE and overestimated snow every year in this basin. 15 

Reconstruction’s main advantage lies in its provision of spatially resolved SWE estimates without the need for ground-based 

observations. Reconstruction’s biggest disadvantage is that SWE can only be calculated retroactively after snow disappears, and it 

works best in areas with clear accumulation and ablation periods. It also cannot assess SWE in the accumulation zones of glaciers, 

and the capability of current methods of mapping FSCA on the ablation zones of glaciers has not been assessed (Painter et al., 

2012b). 20 

By nature, space-time cubes of retrievals and derived products from satellites are “big data.” For this type of information, machine 

learning has proven particularly effective compared to traditional multivariate statistical techniques. Machine learning techniques 

such as ensemble regression (Breiman, 2001; Hastie et al., 2009) and neural networks (Hagan et al., 2014) are able to reproduce 

nonlinear effects and interactions between variables without assumptions of a functional form. These machine learning techniques 

are also robust to overfitting in the presence of large datasets. 25 

The goal of this study is to develop and evaluate models using machine learning for SWE prediction in Afghanistan’s watersheds. 

Predictors include static and dynamic variables that are available in near-real time, during the snow season rather than after the 

snow has melted. The target variable is reconstructed SWE, which we suggest is the closest ground-truth available for data-sparse 

regions. 

2 Study area 30 

Afghanistan’s main mountain range, the Hindu Kush (Fig. 1), is marked by seasonal drought during the summer and fall. 
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Figure 1. MODIS true color image of snow covered watersheds of Afghanistan with 2003–2011 April 1st reconstructed mean SWE 
overlaid. Also shown are the watersheds of Afghanistan [from Daly et al., 2012], the country outline, the h23v05 MODIS tile, and areas 
with permanent snow and ice. 

Salang Pass, which straddles the Upper Kabul and Amu Darya watersheds, is the only location in Afghanistan above 3000 m with 5 

long term (albeit not current) climate records (Table 1). Snow depth peaks here in April at a maximum of 450 cm and melts out by 

July. In comparison, snow depth in Kabul peaks in February at a maximum of 65 cm and melts out by April. The highest peaks in 

Afghanistan at 7500 m are covered by permanent snow and ice. Historically, about 5% of the country’s land area was forested. 

Decades of war, illegal logging, and a lack of replanting have reduced forest cover to only 2% (United Nations, 2009). The limited 

forest cover facilitates remote sensing of the snowpack from optical and microwave instruments, as canopy cover obstructs the 10 

view for optical instruments (Raleigh et al., 2013) and interferes with passive microwave emission (Tedesco and Narvekar, 2010). 

Because of its seasonal summer drought and lack of reservoirs, Afghanistan’s water supply is particularly susceptible to year-to-

year variations in snowfall. 

3 Methods 

3.1 Predictors and target 15 

A mix of static physiographic and dynamic variables were used as predictors (Table 2). All variables were computed at or 

resampled to 3.125 km resolution using Gaussian pyramid reduction or expansion (Burt and Adelson, 1983) for the initial steps 

and bilinear interpolation for the final step. The 3.125 km resolution was chosen because it is the finest resolution available for the 

36 GHz enhanced resolution PM brightness temperature. The study area shown in Figure 1 is the MODIS h23v05 tile, which the 

snow-covered portions of Afghanistan’s watersheds fit into. Elevation dependent variables were calculated from the 30 arc-sec 20 

ASTER Digital elevation model. 
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Only nighttime data from the microwave brightness temperatures were used, to almost always image a frozen snowpack. The time 

of acquisition for the brightness temperatures varies by up to 30 minutes centered around 01:00 am local Afghanistan time. The 

36 GHz V brightness temperatures are available at 3.125 km, but the 18 GHz V brightness temperatures are only available at a 

resolution of 6.25 km, so the 18 GHz brightness temperatures were resampled to the 3.125 km resolution. Likewise, the 10 GHz 

brightness temperatures were only available at 12.5 km resolution, so they were also resampled to 3.125 km. The two different 5 

brightness temperature differences were used to account for shallow and deep snow. Use of these four brightness temperature 

channels in simulations has shown promise for SWE retrievals (Markus et al., 2006), although the T18V–T36V is more commonly 

used (e.g. Kelly, 2009). At the latitude of the Afghanistan, AMSR-E has 2-day repeat coverage, so gaps in brightness temperatures 

were filled using bilinear interpolation. The brightness temperatures were then smoothed using a 7-day moving median filter. The 

FSCA and SWE dynamic variables are discussed below. 10 

3.2 Reconstruction using the ParBal energy balance model 

To compute snow and ice melt, we used the ParBal (Parallel energy balance) model (Bair et al., 2016), a full energy balance snow 

and ice melt model, run at an hourly timestep and initially at 463 m resolution in a MODIS sinusoidal projection. ParBal, unlike 

most melt models, does not require total precipitation, the most uncertain term in the water budget for montane areas (Adam et al., 

2006; Milly and Dunne, 2002). At any time step 𝑗, the snow melt 𝑀# is a product of the fractional snow covered area 𝐹%&' and the 15 

potential melt	𝑀), i.e. the melt if a pixel were 100% snow covered (Molotch and Bales, 2005): 

𝑀# = 𝐹%&',#×𝑀),# (1) 

The potential melt is computed using downscaled inputs from reanalysis and remotely sensed data. We briefly summarize this 

process and refer the reader to Bair et al. (2016) for details. Elevation dependent variables are scaled using the difference between 

a coarse resolution digital elevation model (DEM) for CERES (Clouds and the Earth's Radiant Energy System, Rutan et al., 2015) 

or GLDAS (Global Land Data Assimilation System, Rodell et al., 2004) and a DEM at the 463 m scale. For incoming solar 20 

radiation, CERES incoming solar radiation is used to derive the transmissivity, then the local illumination conditions were 

computed using horizon angles and knowledge of the sun’s position. For incoming longwave radiation, a sky view factor is used. 

Latent and sensible fluxes are computed using wind speed dependent exchange coefficients. Melt only occurs when the snow 

surface temperature is at zero degrees Celsius. Cold content is accounted for to prevent spurious melt when the energy balance is 

positive, but the snowpack bulk (not surface) temperature is well below the melting temperature. Incoming radiative fluxes and 25 

other meteorological variables are from GLDAS and CERES. 

3.2.1 Inputs to ParBal 

Dynamic inputs to ParBal to compute snow and ice melt include FSCA, snow albedo, incoming solar radiation, incoming longwave 

radiation, air temperature, wind speed, and specific humidity. Downscaled forcings from GLDAS at ¼º and CERES-SYN at 1º 

provided all the energy inputs. By using both GLDAS and CERES, we overcome biases from failures to detect clouds in the 30 

shortwave and longwave GLDAS and NLDAS (Cosgrove et al., 2003) products (Bair et al., 2016; Hinkelman et al., 2015; Lapo et 

al., 2017). Specifically, CERES SYN provided incoming shortwave and longwave fluxes while GLDAS provided air temperature, 

wind speed, and specific humidity. Note that GLDAS only provides wind speed, not its vector, therefore the terrain-based 

downscaling approach (Liston and Elder, 2006; Liston et al., 2007) that Bair et al. (2016) used could not be applied. Instead, 

GLDAS wind speeds were resampled from ¼º to 463 m. Although this resampling leads to errors in wind speeds and is a source 35 
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of uncertainty, the latent and sensible terms that depend on wind speed tend to be small and usually of opposite sign (Marks and 

Dozier, 1992). GLDAS and CERES were linearly interpolated from 3 h to 1 h intervals to match the model time step. 

Key inputs are the remotely sensed FSCA and snow albedo. We use the products MODIS Snow Covered Area and Grain Size 

(MODSCAG, Painter et al., 2009) along with the MODIS Dust and Radiative Forcing in Snow (MODDRFS, Painter et al., 2012a). 

Snow uncontaminated by particulates is rare outside Antarctica (Warren and Wiscombe, 1980), therefore the clean snow albedo 5 

estimate from MODSCAG is adjusted for impurities. We then gap fill and smooth these snow property retrievals using a validated 

algorithm (Dozier et al., 2008; Rittger et al., 2013). The use of a remotely-sensed albedo, to which snowmelt is very sensitive, has 

been shown to be far more accurate (Bair et al., 2016; Molotch and Bales, 2006) than age-based schemes (Malik et al., 2014; U.S. 

Army Corps of Engineers, 1956), yet these age-based schemes predominate in snow models (Girotto et al., 2014; Margulis et al., 

2015; Markstrom et al., 2015; Molotch, 2009). To compensate for sensitivity of modeled snowmelt to albedo, some SWE 10 

reconstruction studies (Guan et al., 2013; Molotch, 2009; Molotch and Margulis, 2008) used ground-based ancillary information 

to find the occurrence date of snowfall. 

Static inputs to ParBal to compute snow and ice melt include: elevations, slopes and azimuths, horizon angles, topographic view 

factors, and canopy cover. For elevation data, we use ASTER GDEM version 2. Slopes, azimuths, horizon angles, and view factors 

were then computed from the digital elevation models (Dozier and Frew, 1990). Canopy type and fraction were taken from the 15 

Global Land Survey (USGS, 2009). 

3.2.2 Cold content 

To limit early melt, ParBal constrains melt to only occur in a ripe snowpack. In earlier versions, cold content did not need to be 

accounted for since the model was not run prior to peak SWE. Cold content is not directly modeled since the density and depth of 

the snowpack are not known. Instead, calculating its proxy uses a scheme modified from Jepsen et al. (2012). 20 

𝑀),# = max 0,min 𝑄456,7

#

789

, 𝑄456,#  (2) 

𝑄456is the sum of the energy balance terms: 

𝑄456,# = 𝑅# + 𝐻# + 𝐿# + 𝐺# (3) 

R is net radiation, H and 𝐿 are sensible and latent heat exchanges, and G is conduction, all at time step j. In the Jepsen et al. (2012) 

approach, cold content is reset daily at midnight (k = 0 in Eq. 2). Our modification is to reset the cold content daily after sunset, 

which is a more accurate estimate of when the energy balance becomes negative and daily cold content starts building. Comparisons 

of melt from ParBal constrained with this cold content scheme and lysimeter measurements at an energy balance site on Mammoth 25 

Mountain, CA (Bair et al., 2015) show excellent agreement (Fig. S1), with both the onset of melt that reached the bottom of the 

snowpack and seasonal cumulative total melt. Complex routing through the snowpack before reaching the lysimeters likely causes 

a few discrepancies in the quantities of daily melt (Kattelmann, 2000; Wever et al., 2014). 

Examination and validation of reconstructed SWE (Figure 2) shows absolute and relative ablation curves for all non-glacierized 

pixels. To our knowledge, there are too few in situ measurements of SWE in Afghanistan during the 2003 to 2011 study period to 30 

compare with reconstructed SWE. Instead, we used passive microwave-based SWE estimates from AMSR-E from a previous study 

(Daly et al., 2012); Table 3 shows comparisons of SWE on April 1st. 
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The Amu Darya and the Kunar basins were excluded because of extensive glaciers, such that passive microwave estimates of SWE 

do not provide meaningful estimates of snow on the ground. In every basin on April 1st, there were many areas with more 

reconstructed SWE than the passive microwave saturation limit of 150 mm (Hancock et al., 2013; Kelly et al., 2003; Takala et al., 

2011; Tedesco and Narvekar, 2010). Basin-wide, differences between the results of this study and the results reported in Daly et 

al. (2012) were small, < 8 mm, for all basins except the upper Kabul (22 mm difference), which had the highest average SWE in 5 

both studies. 

  
Figure 2. Reconstructed total SWE volume (a) and percent of 2003–2011 average (b) for all non-glacierized pixels in the 
study area. 

At North Salang or Salang Pass, the only high elevation station with climatological measurements available in Afghanistan (Table 

1), the Oct-May precipitation is 961 mm. October to May corresponds to the time when most of the precipitation falls as snow, 

based on the mean temperature. Using an energy balance model, Schulz and de Jong (2004) estimate that on average 44% of the 

snowpack sublimated in the climatologically similar Atlas Mountains of Morocco. Likewise, Bair et al. (2015) also estimate that 10 

on average 44% of the snowpack sublimated at a high altitude site in California’s Sierra Nevada using co-incident lysimeters and 

a snow pillow. Using this sublimation estimate leaves 538 mm of SWE at the peak, assuming negligible mass gain from 

condensation/deposition. The mean April 1st reconstructed SWE, which can be assumed to be close to the peak, for Salang Pass 

is 498 mm. 

3.3 Validation in California’s Sierra Nevada 15 

To better understand the biases and errors in our reconstructed SWE estimates used in Afghanistan, we ran ParBal in the Sierra 

Nevada as it was run in Afghanistan. Specifically, as explained in Sect. 3.2.1, meteorological forcings from GLDAS at ¼º spatial 

resolution and radiometric forcings from CERES at 1º spatial resolution were used. For validation, we used three years of the best 

aerial SWE estimates available from NASA’s Airborne Snow Observatory for the Upper Tuolumne River Basin in the Sierra 

Nevada. For comparison, the Supplement includes published reconstructions from ParBal forced with National Land Data 20 

Assimilation System 2 (Xia et al., 2012) at 1/8º spatial resolution (Bair et al., 2016). FSCA was the same for both GLDAS/CERES 

and NLDAS model runs, which Bair et al. (2016) showed to have 15% MAE and 5% bias on average. Cold content was included 

in the GLDAS/CERES run, but not the NLDAS run. 
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Fig. S2 and Tables S1 and S2 show full results of the two different model runs, which are summarized here. Overall, compared to 

the NLDAS model run, MAE in the GLDAS/CERES run from peak SWE through melt out decreased from 26% to 22%, but at the 

expense of some bias which dropped from 0 to –8%. Notably, the GLDAS/CERES model run was slightly more accurate (16% 

and 19% MAE for 2014 and 2015 vs. 20% and 31% MAE) than the NLDAS model run in 2014 and 2015, both drought years with 

SWE depths similar to what we expect in Afghanistan. Also of note is that for the areas with low canopy cover (0 to 0.2), similar 5 

to much of the snow covered areas in Afghanistan, the GLDAS/CERES model run showed a –19% bias, compared to a 12% bias 

in the NLDAS model run. Full analysis of the biases and model sensitivity is beyond the scope of this study. For the purposes of 

this study, we conclude that the reconstructed SWE estimates using the GLDAS/CERES forcings are accurate enough. Though 

they may be low biased by about –8% to –19%, they represent the best ground truth available for this austere region. 

3.4 Machine learning modelling 10 

Given the size of the dataset, 104 million predictor and target observations, random subsampling was used to keep the computation 

times reasonable. FSCA values of zero were excluded since 𝐹%&' = 0 ≝ 𝑆𝑊𝐸 = 0 . Including predictions of zero SWE would 

dramatically lower our error, but would imply false accuracy. At 3.125 km, about 1/3rd of the pixels in the study area showed some 

snow or ice on every day of the year (Figure 1, blue area). Since reconstruction cannot provide a meaningful estimate of SWE on 

a glacier, we also excluded those pixels from the analysis. Most of these pixels are in the Amu Darya River Basin, but some are in 15 

the Kunar Basin. April through June observations were used since reconstructed SWE estimates are valid only during ablation. 

Probably, some snow-covered pixels were still in the accumulation phase in early April, but most were likely melting during the 

day, based on the limited snow climate observations for Afghanistan. The study period could have been extended further into the 

summer, but was stopped at the end of June to keep the dataset size manageable. Note that that the SWE reconstructions were 

computed over the entire 2003–2011 study period, since the SWE is built up from melt-out backwards, but only April through June 20 

SWE estimates were used for training. 

To better understand the relationships between variables, we first computed a correlation (r) matrix between the predictors and the 

target for 90,000 predictor & target pairs across all years (Figure 3). Between predictors, the Latitude/Longitude with SW/W 

distance to ocean; the SW/W/NW barrier difference; and the Mean Reconstructed SWE with FSCA all had 𝑟  > 0.70, indicating 

strong correlation. For the target Reconstructed SWE, only Mean Reconstructed SWE and FSCA had r > 0.70. We note that FSCA was 25 

used as a both a predictor and to compute the reconstructed SWE, the target. Likewise, the daily Mean Reconstructed SWE was 

computed across all years, excluding the year currently being predicted, and used as a predictor. Correlation between predictors 

and targets is desirable but correlation between predictors, called collinearity, is not. Collinearity does not degrade the performance 

of the models, but makes assessment of the importance of the correlated predictors independently more difficult (Dormann et al., 

2013), an issue we address in the results. 30 

A half-dozen different approaches were tried on random selected subsets of data from all years: stepwise multiple linear regression; 

support vector machines; cross-validated regression trees; least-squares (LS) boosted regression trees; bagged regression trees; and 

feed-forward neural networks. The bagged trees and feed-forward neural networks were selected for consistently producing the 

lowest root mean squared error (RMSE). 
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Figure 3. Correlation coefficient (r) for all variables, sampled randomly across all years. 

3.4.1 Bagged trees 

Classification and regression trees (CART) comprise a supervised machine learning technique where predictors are recursively 

split to produce increasingly homogenous subsets of target data (Breiman et al., 1984). Classification trees are used for discrete, 5 

categorical data while regression trees are used for continuous data. This technique has been used extensively on snow-related 

prediction, for example in snow mapping (Rosenthal and Dozier, 1996) and avalanche forecasting (Davis et al., 1999; Peitzsch et 

al., 2012), but it tends to overfit. Bagged (bootstrap-aggregated, Breiman, 1996) trees, with the most recent developments called 

random forests (Breiman, 2001), are ensemble methods whereby multiple trees are grown from random subsets of predictors, 

producing a weighted ensemble of trees. Bagged trees reduce overfitting and increase predictive accuracy over single trees 10 

(Breiman, 2001). Regression ensemble hyperparameters were optimized by minimizing cross-validation loss; the parameters 

included the method (i.e. bagged or LS boosted), number of learning cycles, maximum number of splits, minimum leaf size, and 

number of variables to randomly sample. 

3.4.2 Neural networks 

Neural networks attempt to mimic biological systems by creating a network of interconnected and weighted elements called 15 

neurons (Hagan et al., 2014). The neurons provide the connection between the predictors and the target. In supervised learning, 

the weights of the neurons are iteratively adjusted to minimize error. For our study, a feed-forward neural network was selected 

for simplicity. One set of parameters to optimize, the number of neurons in each hidden layer, was chosen by testing different 

combinations on the randomly selected subsets. 
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3.4.3 Training and prediction 

For the final model training, each year from 2003 through 2011 was run separately. For each year, 80,000 randomly selected 

predictor and target observations were selected for training from all years except the current target year. The trained models were 

then used to predict 10,000 targets for the target year. Larger sample sizes of 800,000 training observations were tried but did not 

improve model accuracy. For each basin, 90,000 randomly selected predictor and target observations were used with 20% of the 5 

observations held out for validation. Residuals and summary error information, RMSE and bias, were stored for each year. All 

years were then run by basin to examine regional differences in model performance. 

Bagged trees and neural networks have been referred to informally as black boxes, because the model structure is complicated and 

difficult or impossible to interpret, but regression trees offer the ability to independently assess predictor performance. For a single 

tree, estimates of predictor importance are computing by summing changes in the model mean squared error using every split for 10 

a predictor, then dividing by the total number of splits that predictor appears in (Breiman et al., 1984). This method can be repeated 

over all the trees in the ensemble and then averaged to obtain an ensemble predictor importance (Friedman and Meulman, 2003). 

We used this technique to examine predictor importance, which ranges from 0 to 1, for the bagged trees. We also tried the out-of-

bag permuted predictor importance (Breiman, 2001), but found that it showed high importance for predictors not well correlated 

with the target. One possible explanation is that correlated predictors can be overestimated using this method (Strobl et al., 2008). 15 

Thus, we only used the predictor importance as Friedman and Meulman (2003) define. 

4 Results and discussion 

The bagged trees and the neural networks performed similarly when grouped by year (Table 4). Mean bias across all years is 14% 

for both methods, and RMSE values are 46 to 48 mm. Year-to-year error is similar, with errors ranging from 29 to 86 mm RMSE 

with –49 to +94% bias for the bagged trees and 31 to 87 mm RMSE with –48 to +88% bias for the neural networks. Error plots 20 

were almost identical, so only those for the slightly better performing bagged trees are shown (Figure 4). 
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Figure 4. (a) Bagged trees bias and RMSE; (b) residuals (machine learning prediction – reconstructed SWE) by year with red line as the 
median, boxes encompassing the 25th (𝒑𝟐𝟓) and 75th (𝒑𝟕𝟓) percentiles, whiskers showing non-outlier ranges, and crosses indicating 
outliers, defined as points greater/less than 𝒑𝟕𝟓 ± 𝒘 𝒑𝟕𝟓 − 𝒑𝟐𝟓 , with 𝒘 = 𝟏. 𝟓. 

The worst misses came in 2004, where both models showed high bias, and 2009, where both models were low. Those years coincide 

with anomalously low and high total SWE volumes, especially at the beginning of the melt season (Figure 2). Similarly, when 5 

grouped by basin (Table 5 and Figure 5) the bagged trees and neural networks had nearly identical performance with mean values 

across all basins of 22–28 mm RMSE and 0% bias. The RMSE ranged from 6 to 45 mm RMSE for the bagged trees and 9 to 58 

mm for the neural networks. Given that the bias only ranged from 0–1% for the bagged trees and was 0% for the neural networks, 

it is clear that the higher RMSE is the result of different mean SWE in the basins. The highest RMSE occurred in the upper Kabul 

for both models, which showed a much greater mean April 1st SWE value compared to the other basins (Table 3). 10 

Both models showed 0% bias for this basin, indicating excellent performance relative to the other basins. Again, error plots were 

almost identical, so only those for the bagged trees are shown for brevity (Figure 5). 
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Figure 5. Same as Figure 4 except by basin for all years, (a) Bagged trees bias and RMSE; and (b) residuals. 

Figure 6 shows the predictor performance, ranked by importance, a relative measure ranging from 0 to 1 explained in Sect. 3.4.3. 

As expected, FSCA and Mean Reconstructed SWE are by far most important predictors, with values of 0.47 and 0.26. As mentioned 

in Sect. 3.4, these two variables are highly correlated (r = 0.73) making collinearity a concern. For predictive purposes, collinearity 

is not an issue, but for predictor importance the collinearity means that it is not possible to separately evaluate the predictive power 5 

of FSCA and Mean Reconstructed SWE. Clearly both are important predictive variables, but FSCA varies from year to year and 

therefore would better capture interannual variability. 

 

Figure 6. Predictor importance (see Sect. 3.4.3) for randomly selected observations across all years using bagged regression trees. 

All other predictors show importance < 0.08. The third most important predictor is Elevation, shown to be an important predictor 10 

in previous studies (Fassnacht et al., 2003; Schneider and Molotch, 2016). The fourth most important variable is Longitude, 

followed by TB18V–TB36V, the difference between microwave brightness temperatures at 18 and 36 GHz, showing that the passive 

microwave SWE retrievals have little predictive power. 
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Afghanistan is ideal for optical remote sensing, given the sparse canopy. Cloud cover is a serious limitation to optical remote 

sensing, but the melt season in Afghanistan is usually clear. Previous work has shown that the viewable gap fraction adjustment 

used here produces accurate results for under canopy snow mapping (Raleigh et al., 2013). Likewise, the lack of canopy cover in 

Afghanistan makes it an ideal study area for passive microwave remote sensing, but the results here are not encouraging. A detailed 

time series of TB18V–TB36V and reconstructed SWE for the pixel containing Salang Pass (Fig. S3) shows the TB18V–TB36V time series 5 

to have little year to year variability, making it not useful for discerning wet years from dry years. The little predictive power for 

estimating SWE from passive microwave, even at the enhanced 3.125 km resolution in this ideal study area, is discouraging, 

although we note that the basin wide SWE volumes estimated by reconstruction were close to those estimated via passive 

microwave (Daly et al., 2012). However, the snowpack was thin and much of the area in each basin was free of snow on April 1st, 

suggesting that the passive microwave may only be effective at mapping the presence or absence of snow rather than its depth. 10 

Given that passive microwaves are not affected by cloud cover, this is a strength of the approach that could be used to fill gaps 

caused by cloud cover in estimates of FSCA derived from optical instruments. 

As discussed in Sect. 3.3, our reconstructed SWE estimates are not perfect. Potential sources of uncertainty include unobservable 

FSCA during cloudy periods, reflectance bias at higher sensor zenith angles (Dozier et al., 2008), melt out date (Slater et al., 2013), 

snow albedo, and wind speed. We assert however that all of these sources of error have been vetted and addressed in depth (e.g. 15 

Bair et al., 2016; Dozier et al., 2016; Molotch et al., 2010; Rittger et al., 2016). 

These models could be implemented operationally assuming that the dynamic inputs are made available in near-real time, certainly 

feasible for the enhanced resolution PM brightness temperatures and for a gap-filled and smoothed MODSCAG FSCA. Given the 

low predictor importance of the enhanced resolution PM brightness temperatures, that predictor could be excluded or substituted 

with a PM SWE product that is operationally available (e.g. AMSR2 SWE at 10 km resolution, Kelly, 2013). Likewise, the 20 

MODSCAG FSCA is available now in near-real time from the NASA JPL Snow Data System, although it suffers from noise, gaps, 

and cloud-snow discrimination issues (Dozier et al., 2008). Another issue to overcome would be application of the models outside 

the training period, i.e. the accumulation period. 

5 Conclusion 

We successfully constructed two machine learning models, trained on reconstructed SWE, that could be used for operational SWE 25 

prediction in the austere watersheds of Afghanistan. We suggest that our reconstructed SWE estimates are the most accurate ground 

truth available for this region, with many areas showing an order of magnitude more SWE than passive microwave sensors indicate. 

The bagged regression trees performed slightly better than the neural networks and have the added benefit of predictor importance 

estimates. On average over all years, the models were unbiased, but over-estimated SWE in the lowest snow year and under-

estimated SWE in the highest snow year. Moreover, the RMSE was higher in the basins with deeper snow, most notably the upper 30 

Kabul, but unbiased across all basins, indicating consistent performance. The most important predictors were the fractional snow-

covered area and the Mean reconstructed SWE (excluding the year being predicted). Elevation, Longitude, and a measure of SWE 

from the passive microwave were the third through fifth most important predictors. The method can provide seasonal snowmelt 

runoff forecasts based on satellite data alone, based on fractional snow-cover estimates and passive microwave brightness 

temperatures at 18 and 36 GHz. 35 
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6 Data availability 

Most of the data used are in government archives: Calibrated passive microwave daily brightness temperatures are from the 

National Snow and Ice Data Center [https://nsidc.org/pmesdr/]. MODSCAG and MODDRFS snow cover and dust radiative forcing 

data are from the NASA JPL Snow Data System [https://snow.jpl.nasa.gov/portal/]. Land survey data are from the Global Land 

Cover Facility [http://glcfapp.glcf.umd.edu/data/gls/]. ASTER-derived elevation grids are from the ASTER Global Digital 5 

Elevation Model [http://dx.doi.org/10.5067/ASTER/ASTGTM.002]. The sparse climate data available collected by the World 

Meteorological Organization are available from the U.S. National Climatic Data Center [ftp://ftp.atdd.noaa.gov/pub/GCOS/WMO-

Normals/RA-II/AH]. GLDAS data are from NASA GSFC’s HDISC: Hydrology Data and Information Services Center 

[https://disc.sci.gsfc.nasa.gov/hydrology]. CERES SYN data at 1°, 3 h resolution can be ordered at the CERES HDF Data Products 

page [https://ceres.larc.nasa.gov/compare_products-ed2.php]. The reconstructed SWE values used as our training target dataset are 10 

available at 

 ftp://ftp.snow.ucsb.edu/pub/org/snow/products/reconstruction/h23v05. 

7 Supplement link 

(to be provided by Copernicus) 
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12 Tables 

Table 1. Climate records (monthly averages) from Kabul and Salang Pass. 

Month 
Mean air 
temp., °C 

Mean 
precip., 

mm 

Max 
snow 

depth, 
cm 

Mean 
days 
with 
snow 

Mean air 
temp., °C 

Mean 
precip., 

mm 

Max 
snow 

depth, 
cm 

Mean 
days 
with 
snow 

 Kabul, 1791 m (1956-1983) North Salang, 3366 m (1960-1983) 
Jan -2.3 34.3 48 7 -10.3 108.7 300 13 
Feb -0.7 60.1 65 6 -9.5 142 367 15 
Mar 6.3 67.9 30 3 -5.4 185.9 383 18 
Apr 12.8 71.9 0 0 -0.1 197.8 450 15 
May 17.3 23.4 0 0 2.9 123.7 366 10 
Jun 22.8 1 0 0 7.5 10 66 1 
Jul 25 6.2 0 0 9.7 6.8 0 0 
Aug 24.1 1.6 0 0 8.6 6.7 2 0 
Sep 19.7 1.7 0 0 4.7 7.5 40 1 
Oct 13.1 3.7 0 0 0.7 30.2 102 6 
Nov 5.9 18.6 4 0 -4 68.4 184 8 
Dec 0.6 21.6 30 4 -7.8 104.3 320 11 
Annual 12.05 312 14.75 2 -0.25 992 215 8 
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Table 2. Predictor and target variables 

Name Description 
Physiographic predictors 
Day of year Sine of day of year; sine function used to create a continuous variable 
Elevation Pixel average elevation 
Latitude Pixel center latitude  
Longitude Pixel center longitude 
NW/W/SW barrier difference Elevation difference between pixel and highest pixel in each direction, also 

called shield height  
W/SW distance to ocean Pixel distance to ocean or sea in each direction. NW was not used, as 

distance exceeds 5000 km for many pixels. 
Southness Computed as sin(slope)×cos(aspect), with slope as upward from horizontal 

and aspects from south with counter-clockwise as positive 
Dynamic predictors 
TB10V–TB18V Difference between enhanced resolution PM brightness temperature at 10 

GHz, vertically polarized, and 18 GHz, vertically polarized 
TB18V–TB36V Difference between enhanced resolution PM brightness temperature at 18 

GHz, vertically polarized, and 36 GHz, vertically polarized 
FSCA Fractional snow-covered area 
Mean reconstructed SWE Mean daily SWE computed over all years except the target year 

Target  
Reconstructed SWE Reconstructed daily SWE  
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Table 3. April 1st reconstructed mean basin-wide SWE estimates from this study compared to passive microwave (AMSR-E) estimates 
from Daly et al. (2012). Highly glacierized basins are excluded. 

April 1st mean basin-wide SWE, 
mm 

Years 
compared Helmand Western Harirod-

Murghab 
Upper 
Kabul Northern 

This study 2003-2011 7 1 13 61 12 

Daly et al. (2012)  2002-2010 11 4 15 43 20 
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Table 4. RMSE and bias for bagged trees and neural networks, by year. 

    2003 2004 2005 2006 2007 2008 2009 2010 2011 Mean 

Bagged 
trees 

RMSE, mm 40 51 44 29 37 44 86 39 43 46 

Bias, % 34 94 –15 13 –17 56 –49 –27 34 14 

Neural 
networks 

RMSE, mm 44 49 47 31 42 47 87 41 42 48 

Bias, % 36 88 –16 11 –13 62 –48 –27 31 14 
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Table 5. RMSE and bias for bagged trees and neural networks, by basin. 

    
Harirod-
Murghab 

Helmand Upper Kabul Northern Western Mean 

Bagged trees 
RMSE, mm 19 19 45 19 6 22 
Bias, % 0 1 0 1 0 0 

Neural networks 
RMSE, mm 25 23 58 25 9 28 

Bias, % 0 0 0 0 0 0 
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